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ABSTRACT
Field relations, regional correlations, and sedimentological observations show that the 

organic-rich Middle to Upper Devonian Marcellus to Dunkirk black shales (eastern United 
States), commonly interpreted to have been deposited in deep, quiet, and permanently anoxic 
basins, were instead deposited in relatively shallow settings that at times had moving cur-
rents and oxygenated bottom water that supported benthic life. Traditionally interpreted to 
downlap onto a deep basin floor, regional wireline-log correlations linked to outcrop studies 
show that these black shales instead onlap unconformities on a tectonic high to the west. The 
basic elements of the proposed model are present in a range of other occurrences around 
the world, and this shallow onlap model should be considered as a viable hypothesis for the 
origin of any black shale succession.

INTRODUCTION
The origin of the Middle and Upper Devo-

nian organic-rich black shales of the Appala-
chian Basin, eastern United States, has been 
the subject of lively debate for more than a 
century. The preferred interpretation in recent 
decades has been that the organic-rich shales 
were deposited in a deep, quiet, anoxic basin. 
This interpretation is based on geochemical attri-
butes believed to be indicative of deposition in 
an anoxic water column, and the assumption that 
such fine-grained, organic-rich sediments could 
only accumulate in deep, low-energy settings 
like the modern Black Sea.

The observation that many black shales in 
the rock record directly overlie unconformities 
led some early workers to interpret a shallow-
marine origin (e.g., Grabau and O’Connell, 
1917). Conant and Swanson (1961) observed 
that the organic-rich Devonian Chattanooga 
Shale of the southern Appalachian Basin directly 
overlies a major unconformity and was time-
equivalent to nearby areas of exposed land, 
which led to the interpretation that the shales 
could not have been deposited in any more than 
30 m of water. Nonetheless, in many subsequent 
studies, deep-water interpretations were favored. 
Water-depth estimates for the deposition of black 

shales in the Devonian Appalachian Basin have 
ranged from 150 m (Kohl et al., 2014) to 200 m 
(House and Kirchgasser, 1993) to 300 m (Baird 
and Brett, 1991) and even 900 m (Lundegard 
et al., 1985).

Regional correlations of the black shales in 
New York show very similar field relations to 
those found by Conant and Swanson (1961). 
Close examination of these black shales reveals 
a number of features that indicate reworking 
and bedload sediment transport by waves and 
currents consistent with a shallow-marine inter-
pretation. The presence of fossils and bioturba-
tion within the black shales (McCollum, 1988; 
Wilson and Schieber, 2015) show that the water 
column could not have been permanently anoxic. 
The objectives of this paper are (1) to show that 
these black shales onlap unconformities devel-
oped on a tectonic high to the west, and (2) to 
present a model of shallow-marine deposition 
for the Devonian black shales of the northern 
Appalachian Basin.

OBSERVATIONS
The study area is in the northern Appala-

chian Basin in central and western New York 
State (Fig. 1A), which was bounded to the east 
by the active Acadian orogenic front and to the 

northwest by the Findlay-Algonquin arch during 
the Middle and Late Devonian. Thrust-loading to 
the east led to subsidence along the thrust front 
to the east and uplift on the Findlay-Algonquin 
and Cincinnati arches to the west. This produced 
a major decrease in stratal thickness from east to 
west and the development of unconformities on 
uplifted tectonic highs (Ettensohn, 1994). The 
Devonian Catskill Delta complex is composed of 
the sediments sourced from the uplifted Acadian 
Mountains which include nonmarine sediments 
and marine sandstones, siltstones, and organic-
poor gray shales to the east and time-equivalent 
organic-rich black shales and limestones farther 
to the west (Fig. 1B). There is a vast array of 
names assigned to these units, but to simplify 
this for this brief paper, the focus is on the seven 
prominent organic-rich black shales (Fig. 1B). 
From oldest to youngest these are the Marcellus, 
Levana, Geneseo, Middlesex, Rhinestreet, Pipe 
Creek, and Dunkirk Shales. The Dunkirk Shale is 
equivalent to the basal part of the Ohio and Chat-
tanooga black shales, which overlie and onlap 
unconformities farther to the west. Total organic 
carbon (TOC) measurements and regional cor-
relations show that each of these black shales 
displays a consistent pattern: they thin, become 
more organic-rich, and onlap and pinch out on 
unconformities developed on the tectonic highs to 
the west (Smith, 2013). These well-documented 
unconformities are recognized by sharp-based 
shale packages, missing section, thin lag deposits, 
and low-angle truncations (Schieber, 1998; Over, 
2007). These sharp discontinuities can also be 
recognized in the subsurface using wireline logs 
(Smith, 2013) where there are sharp contacts and 
missing section. For the sake of brevity, we focus 
the discussion on the characteristics of the Gen-
eseo Shale where the onlap is very clear (Fig. 2), 
noting that the other black shales mentioned 
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Figure 2. Wireline-log cross section of onlapping Tully Limestone to Middlesex Shale interval (Fig. 1) that extends from western to central New 
York (line A-A′; see inset). Datum for cross section is base of Middlesex black shale and interpreted equivalents to east. Logs are gamma ray 
(GR [API units]) and bulk density (BD [g/cc]). Cross section shows unconformities in red: one below Tully Limestone, one above it, and one 
at base of Middlesex Shale. Lst—Limestone.

Figure 1. A: Map of Appalachian Basin, eastern United States. Study is focused on New York (NY). PA—Pennsylvania; OH—Ohio; WV—West 
Virginia; VA—Virginia. B: Middle to Upper Devonian stratigraphy for New York State. Basal ages of each successive black shale interval become 
progressively younger toward west as they onlap and pinch out (modified from Rogers et al., 1990). Lst—Limestone.
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above show a comparable pattern (see Fig. DR1 
in the GSA Data Repository1).

Wireline logs provide continuous records 
of the stratigraphy rarely found in outcrop and 
are here used to interpret lithology and build a 
high-resolution stratigraphic framework. Figure 
DR2 shows the link between measured TOC and 
CaCO3 content and wireline-log response. In the 
study interval, limestones have the lowest gamma-
ray and highest bulk-density values, organic-rich 
shales have higher gamma-ray and low bulk-
density values (due to the low density of organic 
matter and associated porosity), and organic-poor 
gray shales have intermediate density and gamma-
ray values (Smith, 2013). These relationships are 
interpreted to occur throughout the study interval 
and are confirmed by outcrop observations and 
studies of well cuttings (Smith, 2013).

Figure 1B shows an erosional unconformity 
called the Taghanic unconformity (Johnson, 
1970), which is developed to the west, that is 
overlain and onlapped by the Tully Limestone, 
Geneseo black shale, and overlying units. There 
is significant erosional relief on the unconfor-
mity (Baird and Brett, 1991), and there are two 
conodont zones missing in the far western part 
of the state in this interval (Huddle, 1981). The 
Tully is a marine limestone with corals and bra-
chiopods that grades to sandstone to the east 
and pinches out to the west where it onlaps the 
unconformity. The overlying Geneseo Shale is 
subdivided into lower and upper members by 
the intervening Fir Tree Limestone. The lower 
Geneseo consists of gray shale in the east that 
becomes progressively more organic rich to the 
west where it thins, onlaps the unconformity, 
and pinches out (Fig. 2). The overlying Fir Tree 
Limestone grades laterally from siliciclastics in 
the east to a progressively cleaner limestone to 
the west until it too thins and pinches out. The 
overlying upper Geneseo also becomes progres-
sively more organic rich to the west until it thins, 

1 GSA Data Repository item 2019078, Figures DR1 (log cross section of Middle and Upper Devonian strata in New York State), and DR2 (logs and core descrip-
tion from Beaver Meadows #1 well, Chenango County, New York State), is available online at http://www.geosociety.org/datarepository/2019/, or on request from 
editing@geosociety.org.

onlaps, and pinches out. The overlying Lodi 
Limestone, Penn Yan Shale, and Genundewa 
Limestone all thin and onlap the unconformity 
to the west. Above that, the Middlesex Shale 
also becomes more organic rich to the west until 
it too onlaps and pinches out on an unconformity 
(Fig. DR1). The underlying Marcellus Shale 
also shows a similar pattern of increasing TOC, 
thinning, and onlap onto an unconformity on top 
of the Onondaga Limestone (Fig. DR1). All of 
strata below the Dunkirk onlap and pinch out on 
the Cincinnati arch farther to the west in Ohio.

DISCUSSION AND PROPOSED MODEL

Field Relations
Any depositional model for this interval 

must account for the preferential development 
of erosional unconformities and black shale on 
tectonic highs such as the Findlay-Algonquin 
and Cincinnati arches and the presence of what 
was likely exposed land nearby during deposi-
tion. This was the main reason that Conant and 
Swanson (1961) interpreted the Chattanooga 
black shale to have been deposited in <30 m of 
water, and the same reasoning applies here. It 
has been suggested that these unconformities are 
entirely submarine in origin, formed during long 
periods (up to millions of years) of nondeposi-
tion and submarine erosion to the west while 
deposition continued to the east (Baird and Brett, 
1991). While there may have been a relatively 
brief period of nondeposition during the initial 
flooding for each shale, that interpretation is dif-
ficult to support given the preferential develop-
ment of the black shales and unconformities on 
what were tectonic highs during deposition and 
throughout much of the Paleozoic.

Sedimentological Aspects
Sedimentological studies of these black shales 

document a range of sedimentary features such 

as scour surfaces, reworked lag deposits, bed 
amalgamation, current, wave, and combined-
flow ripple cross lamination, and both normal 
and inverse grading (Wilson and Schieber, 2014; 
Lash, 2016). Collectively, these features suggest 
a dynamic, storm-influenced setting in which 
bottom currents carried fine-grained clastics in 
bedload westward rather than a still, quiet basin.

Slumps, submarine-fan complexes, mass-
transport deposits, and derivation from canyon-
fed point sources typically dominate deep-water 
environments along a clastic shelf (e.g., Posa-
mentier and Kolla, 2003). If the northern Appala-
chian Basin was truly 150 m deep, at least some 
of these features, along with clinoforms visible 
on seismic data, should be present, but none have 
been reported. The lack of these features and 
the presence of the aforementioned sedimentary 
structures suggest instead a broad deltaic system 
and a shallow, storm-dominated clastic deposi-
tional model (sensu Mutti et al., 2003).

Paleobiological Aspects
In the Middle and Upper Devonian black 

shales of the Appalachian Basin, brachiopods, 
ostracods, agglutinated benthic foraminifera 
(McCollum, 1988; Schieber, 2009), benthic 
fecal pellets (Wilson and Schieber, 2015), cryp-
tobioturbation caused by meiofauna (Schieber, 
2003; Pemberton et al., 2008), and in some cases 
even corals occur within the most organic-rich 
intervals (Baird et al., 1999). These occurrences 
suggest that, although seasonal anoxia is plau-
sible, there were extended periods of at least 
dysoxic conditions.

Geochemical Aspects
Water-column anoxia is not necessary for 

deposition and preservation of organic-rich shales 
(Bohacs et al., 2005). Geochemistry-based stud-
ies to assess redox conditions for the depositional 
setting of these shales (Sageman et al., 2003; 
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Figure 3. Conceptual deposi-
tional model for black shale 
deposition in the Appalachian 
Basin and adjacent areas. 
Color change from gray to 
black indicates increase in 
total organic carbon (TOC) 
to the west. Limestone (blue) 
only forms on the western 
side of the basin.
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Formolo and Lyons, 2007) presumed that enrich-
ment of some redox-sensitive trace elements was 
indicative of water-column anoxia, comparable to 
conditions in the modern Black Sea (Algeo and 
Rowe, 2012). Studies of modern environments 
have shown, however, that sedimentary enrich-
ment of redox-sensitive trace elements does not 
require water-column anoxia, and instead may 
occur where oxygen is present in bottom waters, 
provided the redox boundary is close to the 
sediment-water interface (Elbaz-Poulichet et al., 
2005). Under those conditions, molybdates, for 
example, can diffuse into the porous muddy sedi-
ment and be sequestered and enriched in pyrite-
forming, reducing pore waters (Vorlicek et al., 
2004). The latter process provides a mechanism 
for enrichment of redox-sensitive trace elements 
that is consistent with sedimentologic observa-
tions and stratigraphic studies and can occur in 
shallow-marine conditions.

Based on the above considerations, a model 
for the Middle and Upper Devonian organic-
rich shales of the Appalachian Basin is proposed 
in Figure 3. Organic-rich shale deposition was 
largely confined to the western, cratonward side 
of the basin away from the clastic source. The 
thickest part of the basin fill is to the east and 
composed of marine sandstone, siltstone, and 
gray, organic-poor shale. The increase in TOC 
to the west of the basin axis is largely a func-
tion of decreasing dilution by siliciclastic mate-
rial sourced from the east. The black shales and 
associated limestones are likely transgressive 
deposits up to the zone of maximum TOC, and 
then regressive above that as TOC decreases 
and organic-rich shales grade upward into lime-
stone or gray shale. Limestone deposition is also 
largely confined to the western side of the basin, 
away from the clastic source. Water depths in 
the area of organic-rich shale deposition were 
probably on the order of a few meters to a few 
tens of meters and shallowed to the west where 
TOC is higher. There was likely exposed land on 
nearby tectonic highs farther to the west during 
deposition (Fig. 3; Conant and Swanson, 1961). 
Land-plant fragments are abundant in these 
black shales, and while they may have been 
sourced from the east, it is possible that some 
of them were sourced from the high to the west 
(Conant and Swanson, 1961). Seasonal anoxia 
driven by algal blooms may have contributed to 
the development of the black shales, but there 
were also extended periods when bottom waters 
could support life and the seafloor was colo-
nized by benthic organisms. The black shales 
were likely reworked by storms, which may have 
eroded some of the accumulating organic-rich 
sediments, but over time, enough were preserved 
to produce an organic-rich shale deposit.

Process sedimentology and paleobiology 
support the basic functionality of the proposed 
model, but it is the physical context provided 
by our detailed stratigraphic reconstruction 

(Fig. 2; Fig. DR1) that provides powerful 
validation for a “shallow-water onlap” over a 
“deep-water downlap” model (Fig. 4). Figure 
4 shows two cross sections of the same stratig-
raphy, one using a datum below the interval of 
interest (Fig. 4A) and one using a datum above 
(Fig. 4B). The datum for the cross section in 
Figure 4A (modified from House and Kirchgas-
ser, 1993) is the base of the Tully Limestone and 
interpreted equivalents to the east and west. This 
choice of datum below the shales of interest cre-
ates the illusion that the shales are downlapping 
and amalgamating in a deep basin, even though 
the observed stratigraphy and sedimentological 
features contradict this notion. Figure 4B, with 
the datum above the shales of interest, more 
accurately captures the syndepositional differ-
ential subsidence, the development of unconfor-
mities, and deposition on the tectonic high and 
the onlapping nature of the stratigraphy. Greater 
accuracy can be achieved through construction 
of individual cross sections for each black shale 

and associated facies with the datum chosen just 
above the interval of interest (Fig. 2).

The proposed shallow-water onlap model 
should be considered as a viable hypothesis for 
the study and interpretation of other organic-
rich shale successions. There are many other 
black shales in North America and around 
the world that were likely deposited in similar 
conditions, but there are also some that were 
clearly deposited in deeper-marine settings. 
A shallow-marine origin is likely when black 
shales onlap and overlie unconformities and are 
preserved on tectonic highs. Shales deposited in 
deeper-marine conditions are found at the base 
of clinoforms visible on seismic profiles and 
should have associated deepwater facies such 
as slumps, submarine fans, and other gravity-
driven deposits.

“Black shales…should not be assigned to any general 
condition but each black shale should receive inter-
pretation on the basis of the characteristics of that 
black shale formation”—Twenhofel (1939, p. 1197).
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Figure 4. A: Interpretive cross section redrawn from House and Kirchgasser (1993) of Middle 
and Upper Devonian stratigraphy of central and western New York that shows black shales 
downlapping and amalgamating in deep basin. B: Interpretive cross section of same interval 
using model presented in this paper, showing black shales onlapping unconformities to west. 
Lst—Limestone; Sst—Sandstone; Sltst—Siltstone.
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CONCLUSIONS
• Devonian black shales of the Appalachian 

Basin were deposited in relatively shallow-
water conditions that, at least at times, had 
moving currents and supported benthic life.

• The shallow-water model is consistent with 
the long-established observation that marine 
black shales overlie and onlap unconformities 
on tectonic highs to the west.

• The proposed shallow-water onlap model 
should be considered as a viable hypothesis 
for the study and interpretation of similar 
organic-rich shales around the world.
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