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ABSTRACT

Studying fine-grained siliciclastic deposits of late Middle Devo-
nian in the northern Appalachian Basin provides an exquisite
natural laboratory to observe the complex environments in
which mud can accumulate. More detailed correlation and
facies characterization of this succession provide a wealth of
information and insight into the diverse transport mechanisms
responsible for distributing clastics hundreds of kilometers
away from a tectonically active source area. Commencement
of the third tectophase of the Acadian orogeny and a concur-
rent transgression is expressed throughout the region through
the development of a basin-scale unconformity (the Taghanic
Onlap) above a shelf collapse (i.e., Tully Limestone) and wide-
spread deposition of organic-matter—rich mudstones. Deposi-
tion of the lower Genesee Group is believed to reflect the
coupling of this local expression of a global eustatic highstand
event and contemporaneous cratonic downwarping as a flexural
response of the craton to a continent-microcontinent collision.
High-resolution stratigraphy has allowed differentiation of ge-
netically related packages, composed of distinct lithofacies, with
characteristic physical, biological, and chemical attributes.
The present paper advances an overview of this detailed in-
vestigation based on detailed core measurement and surface
correlation to assess the controlling factors on the mid-
Devonian stratigraphic fill of the northern Appalachian Basin
and demonstrate the distribution in mudstone facies and their
relation to changing environmental conditions.
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INTRODUCTION

A long history of geological study exists for the Devonian
foreland strata of the northern Appalachian Basin, representing
a global reference section because of the nearly complete
stratigraphic record with significant continuous sections ex-
posed throughout the state. Units observed on this trip reflect
the weathering and denudation of a renewed orogen, sup-
plying fine-grained detritus to a rapidly subsiding fore-
land basin. At that time, an oblique convergence between
Laurentia and Avalon terranes fostered magmatic arc volca-
nism and formation of a retroarc fold and thrust belt
(i.e., Hudson Valley Fold and Thrust Belt) that loaded the
eastern edge of the North American craton (Ettensohn, 1985,
1987; Faill, 1985; Figure 1). This event drastically reshaped
the depositional and biological character of the basin, which is
exemplified in a transition from platform carbonate deposition
into distal offshore organic-rich facies (i.e., Tully Formation—
Geneseo Formation). Tectonically induced subsidence was
compounded with a eustatic sea-level rise, further supporting
regional flooding of the craton and dysoxic to intermittently
anoxic conditions across the basin. Moreover, the north-
ern Appalachian Basin was situated 30°-35° south of the
equator (Figure 2). As illustrated in Figure 2, some parts of
Laurentia were emergent, whereas other parts were cov-
ered by a shallow sea. Globally, the Middle-Late Devonian
has been characterized as being dominated by greenhouse
conditions with 4-12 times present-day pCO, (Berner,
1990).

Changing basinal conditions along with potential global
warming may have caused what is referred to as the global
Taghanic Bioevent, which resulted in the demise of Middle
Devonian taxa worldwide and impactful shifts in trophic and
community structure (Johnson, 1970; Aboussalam, 2003;
Baird and Brett, 2008). As the hinterland was carved and
denuded, enhanced delivery of fine-grained detritus and
terrestrial-derived nutrients fostered high surface-water algal
productivity and widespread burial of organic carbon (Algeo
et al., 1995). Drainage of the Acadian terrain fueled delta
growth and offshore-directed sediment dispersal, which is
expressed at aggradational to progradational stacking patterns
observed in the Geneseo Formation. The peak of organic-
carbon preservation is recognized in basal parts of the Gene-
seo Formation, which constitute the most distal facies deposited
subsequent to this phase of tectonism. Following active thrust
loading, sediment input eventually outcompetes the rate of
basin subsidence, and the foreland basin fills with clastic sed-
iments. As a result, coarser-grained facies belts migrate
basinward.
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Figure 1. Idealized cross section of the Appalachian foreland
basin during the Acadian orogeny. Note the collision and sub-
duction of Avalonia to Laurentia (North America), creating a
retroarc fold and thrust belt (modified from Ver Straeten, 2004).

Stratigraphic Framework

Because of the historic attention awarded to the De-
vonian strata of the eastern United States, a large number
of lithostratigraphic, chemostratigraphic, and bio-
stratigraphic studies enabled the development of a fully
integrated stratigraphic hierarchy (Johnson et al., 1985;
Baird and Brett, 1986, 2008; House and Kirchgasser,
1993; Ver Straeten, 2004; Brett et al., 2011). Inasmuch
as extensive surface correlation has resulted in a high-
resolution, fully integrated stratigraphic framework, an
issue that persists is the abundance of unit and
member names adopted by various workers.

For the purpose of this paper, the Geneseo For-
mation herein is subdivided into three members (i.e.,
Lower Geneseo Member, Fir Tree Member, Upper
Geneseo Member; Figures 3, 4). Locally, the Lower
Geneseo Member overlies the Tully Formation, and
where the latter is absent, its basal contact is marked
by a pyritic-phosphatic lag (the Leicester Pyrite Bed).
The Fir Tree Member unconformably overlies the

Lower Geneseo and consists of silt-rich calcareous
mudstones rich in auloporid tabulate corals, ostracods,
and small brachiopods. The Upper Geneseo displays
dark-gray silty mudstones and muddy siltstones with
abundant wave/current ripples, graded beds, and ev-
idence of extensive reworking and erosion.

Detailed Facies Characterization

Detailing the small-scale variability observed in fine-
grained strata is a critical aspect for inferring past
environments of deposition. There have been sig-
nificant advances over the last decade in recognizing
pertinent information in terms of physical bedforms
and biologic attributes in a stratigraphic context (Lazar
etal., 2015). Despite these efforts to define a methodic
framework to characterize mudstone-rich successions,
it can be quite cumbersome and difficult, particularly
in outcrop exposures. For the lower Genesee succes-
sion, samples were collected from the field for thin-
section preparation as well as polishing hand sam-
ples to assist unveiling the small-scale features and
linking with the outcrop expression. Throughout
this succession in central New York, nine mudstone
facies were identified and were used to establish
a stratigraphic depositional framework (Figure 4).

Mudstone Facies of the Lower Geneseo
Member

The Lower Geneseo Member stratigraphically rests
above the Tully Limestone and beneath the Fir Tree
Member and represents the initial phases of thrust

Figure 2. Middle Devonian
paleogeographic map modified
after Blakey (2005). Global map
zooms into the eastern North
America during the Middle De-
vonian. Various structural fea-
tures and basins are outlined on
the right. Note the continent-
microcontinent(s) collision pro-
ducing a rotational, “scissorlike”
closure and uplift of the Avalon
Terrane.
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loading and cratonic downwarping during the third
phase of the Acadian orogeny. Consequently, oro-
genesis was coupled with a eustatic rise in sea level,
resulting in an expansive epicontinental seaway that
covered much of eastern Laurentia. As a result, exten-
sive depositions of organic-matter-rich sediments were
spread throughout the basin, and coeval deposits
can be traced to the neighboring basins (i.e., Illinois
and Michigan basins). Continental flooding in asso-
ciation with limited water circulation has been a key
factor for many depositional models for Devonian
organic-rich mudstones in the Appalachian Basin
(Murphy et al., 2000; Werne et al., 2002; Sageman
et al., 2003; Algeo et al., 2007).

The most prevalent facies throughout the Lower
Geneseo Member is a banded grayish-black mudstone
(BBM), and it manifests as the most organic-rich
facies of the succession (Figure 5). The BBM facies
shows meioturbational fabrics and is texturally a fine
to medium mudstone with erosional contacts and
current-ripple cross-lamination with abundant lami-
naset normal grading. Many sedimentologists would be
inclined to describe this facies as “finely laminated,”
“homogeneous,” or perhaps even “monotonous.” That
being said, careful petrographic and microscopic in-
spection demonstrate that deposition occurred in
quite an energetic environment, because this facies
preserves many features that indicate traction
transport and reworking of the seabed. Upsection,
basal deposits of the BBM facies grade into dark-gray
mudstones with an increase in erosional contacts,

current- and wave-formed features, and bioturbation
intensity and diversity (Figure 6).

An interesting facies development throughout
the Geneseo is the presence of intercalated silty
mudstones and muddy siltstones with terrestrial phy-
todetritus, normal and inverse laminaset grading, con-
volute bedding, as well as current- and wave-formed
features indicating event deposition through lateral
transport (Figures 7, 8). In outcrop, this facies is typi-
cally expressed as recessive beds that interrupt the
organic-rich facies of the Lower Geneseo and can
be difficult to sample because of textural integrity.
Stratigraphic correlation can be aided by recogniz-
ing carbonate concretion and cemented horizons that
occur at multiple levels and manifest as prominent beds
and ridges in outcrop.

Depositional Environment of the Geneseo
Formation

Key takeaways from the preceding observations dem-
onstrate the infilling of a rapidly subsiding foreland
basin subsequent to a major orogenic event. Rejuve-
nation of the Acadian terrain as a clastic source sup-
plied considerable volumes of fine-grained terrigenous
sediment to the deltaic system. Although expansion of
the seaway inundated a vast majority of the continent,
sediment supply began to overwhelm accommodation
as sediments were shed from the hinterland for dis-
persal to the shelf and offshore setting.

426 Sediment Transport Processes and Lateral Facies Gradients across a Muddy Shelf
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Figure 4. Lithostratigraphic section of the lower Genesee Group
drafted from the Lansing drill core. Note the vertical facies pro-
gression from basal organic-rich mudstones of the Lower Geneseo
to organic-lean muddy siltstones reflecting progradation of the
Catskill delta. BBM = banded black mudstone; CSM = calcareous
silty mudstone; DGM = dark gray mudstone; DSM = dark gray silty
mudstone; GM = graded gray mudstone; GMS = gray muddy
siltstone; GSBC = strongly bioturbated calcareous mudstone;
GSM = gray silty mudstone; Ls = limestone; Ms = mudstone; PBM =
pyritic black mudstone; Zs = siltstone.

Through many depositional processes, basinward
migration of the shoreline is indicated via prograda-
tional parasequence stacking patterns and a system-
atic increase in benthic fauna and wave-formed
features upsection. The abundance of current- and
wave-related features displayed throughout the var-
ious facies suggests that deposition did not occur as
a result of suspension settling in a stagnant seaway;
instead, episodic storm events and bottom currents
were the primary agents for sedimentation. Organic-
richness of the succession, particularly in the BBM
facies, appears to be a function of primary pro-
ductivity as well as decreased clastic input (dilution)
following the deepening event that occurred.

The Lower Geneseo Member is capped by a se-
quence boundary that marks a drastic seaward mi-
gration of the shoreline and resulted in deposition of
the auloporid-rich, calcareous silty mudstones of the
Fir Tree Member (Baird et al., 1988). Above the Fir
Tree Member, the Upper Geneseo Member (also
known as Hubbard Quarry Member) is observed and
represents a landward migration of the paleoshore-
line. However, tectonically driven sediment supply
outpaced the change in accommodation, and coarser-
grained facies of the Sherburne Formation interfinger
with the Upper Geneseo Member (including the Fir
Tree and Lodi Members; Baird et al., 1988). Thus, the
Upper Geneseo Member consists of gray silty mud-
stones and muddy siltstones, reflecting progradation
of the Catskill delta and a basinward migration of
coarser-grained facies belts. Internally, the Upper
Geneseo is composed of gray silty mudstones and
muddy siltstones that show hummocky cross-
stratification, ripple cross-lamination, climbing rip-
ples, scour surfaces, and intense bioturbation.
Depositionally, the Upper Geneseo Member records
relatively continuous background sedimentation that
is interrupted by major storms.

CONCLUDING REMARKS

The Geneseo Formation of New York represents
a complex interplay between tectonically driven
accommodation and sediment supply and eustatic
sea-level rise. Throughout the deposition of this
mudstone-dominated succession, the onset of the
third tectophase of the Acadian orogeny put down-
ward pressure on eastern Laurentia. The resulting

WILSON AND SCHIEBER 427



Figure 5. (A) Image of polished hand sample (contrast en-
hanced) of the banded grayish-black mudstone facies, showing
a subtle erosional scour infilled with darker muds (arrows). (B)
Photomicrograph showing predominant horizontal banding with
alternating light and dark layers with subtle erosional scours and
continuous to discontinuous silt laminae caused by bottom-current
sorting and transport. The alternating light and dark layers are
interpreted to reflect fluctuating intensity of bioturbation pro-
duced by very shallow burrowing meiofauna and surface-grazing
organisms such as polychaetes and nematodes. (C) Overview image
of thin section with continuous to discontinuous, planar-parallel
silt lamina/laminasets with scoured bases (arrows).

rapid subsidence of the Appalachian foreland basin
allowed extensive deposition of organic-rich mud-
stones (Ettensohn, 1985, 1987). During active tec-
tonism, rapid subsidence of the foreland basin
followed by periods of stagnation have been key
factors in depositional models for Devonian black
shales of the eastern United States (Ettensohn et al.,
1988; Brett and Baird, 1996). The Geneseo Forma-
tion represents the basal black shale of the third
tectophase of the Acadian orogen and diachronously
overlies the Tully Limestone in central New York. In
western New York, this unconformity is marked by
the Leicester Pyrite Bed, separating the Geneseo
Formation from the underlying Windom Shale in
areas where the Tully Limestone has been eroded

Figure 6. (A) Hand sample image (contrast enhanced) of the
dark-gray mudstones (DGM) facies showing erosional fea-
tures (yellow arrows), current ripples, wave ripples with
arcuate scalloped topography (white arrows), laminaset
grading, disrupted lamina, and bioturbation/biodeformational
structures. The DGM facies contains biodeformation (Bd),
navichnia traces (Na), and a suite of ichnogenera including
Planolites (Pl) and Phycosiphon (Ph). The increase in bio-
turbation intensity (bioturbation index [BI] = 3-4) suggests
that aerobic conditions prevailed and that the redox boundary
was located deeper below the sediment surface. (B) Photo-
micrograph showing the DGM facies with several graded beds.
At the base, we see planar-laminated to low-angle cross-
laminated silt-rich beds that fine upward into sparsely to
moderately bioturbated (Bl = 2-3) DGM. These graded beds
probably represent distal tempestites, where storm waves
suspended and transported shelfal muds offshore. (C) Pho-
tomicrograph showing the DGM facies with current ripples,
continuous planar silt laminae, and amalgamation. An in-
teresting observation is the bundling of silt-laminae upsection
and an overall coarsening-upward trend, which probably
reflects a more proximal environment (coarser clastic influx)
with extensive current reworking.

428 Sediment Transport Processes and Lateral Facies Gradients across a Muddy Shelf
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Figure 7. Photograph and detailed measured section of closely stacked hyperpycnal layers, consisting of interbedded, moderately
bioturbated (Bl = 3) silty mudstone and unbioturbated (BI = 0-1) muddy siltstones with erosional scours, soft-sediment deformation,
normal and inverse laminaset grading, and current-, wave-, and combined-flow ripples (see legend). Various trace fossils are present,
including fugichnia traces (Fu), navichnia traces (Na), Planolites (Pl), and Phycosiphon (Ph). The Bl is from Taylor and Goldring (1993); it is

shown as a vertical bar graph. Ms = mudstone; Zs = siltstone.

(Baird et al., 1988; Baird and Brett, 1991; Brett and
Baird, 1996).

Water depths were probably greatest during the
deposition of the Lower Geneseo Formation. After
the major marine transgression that is marked by the
Lower Geneseo, fine-grained sediments were trans-
ported westward via rapid deposition of mud blankets
from density-minimal clastic dilution and high pri-
mary productivity, possibly aided by minor seaso-
nal stratification (Sageman et al., 2003). The redox

boundary at the time of deposition was probably just
beneath the sediment-water interface, only allowing
organisms to penetrate a few millimeters into the
sediment. Poorly defined layer boundaries and lamina
disruption are suggestive of disturbance of surficial sed-
iments by small meiofaunal organisms, such as nema-
todes, polychaete worms, and benthic foraminifera. The
additional presence of agglutinated foraminifera and
fecal pellets of benthic sediment feeders further con-
firms this assessment. What emerges is a picture of an
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Figure 8. (A) Photomicro-
graphs showing enrichment of
terrestrial phytodetritus in clay-
rich laminae of wave-aided hy-
perpycnal flows (yellow arrows).
(B) Zoom to larger phytodetritus
(>1 mm in diameter). (C) Back-
scatter image detailing the cellular
structure of terrestrial phytode-
tritus. (D) Zoom to other region of
backscatter image with terrestrial
organic-material detailing cellular
structure as well as enhanced
diagenetic overprint (white pyrite
framboids). Det = detector; HV =
high voltage; Mag = magnifica-
tion; SSD-BSD = solid state
backscattered detector; WD =
working distance.

oxygen-restricted (but generally not anoxic) sea floor
that was intermittently swept by currents that trans-
ported mud across the sea floor. The general absence
of larger trace fossils suggests that the bottom waters
were generally too low in oxygen to allow colonization
by larger soft-bodied metazoans but had just enough
oxygen to allow small, low-oxygen-tolerant specialists
to thrive.

Upsection, the Lower Geneseo Member is char-
acterized by dark-gray shales with abundant wave and
current ripples, graded beds, and increased abun-
dance of macroscopically visible bioturbation. Thus,
the Lower Geneseo displays an aggradation to pro-
gradational succession, reflecting increased sediment
supply upsection and closer proximity to the shoreline
upsection. Judging from sedimentary features, the
sediments of the Fir Tree Limestone Member prob-
ably reflect initial deposition on a shallower-water,
mud-dominated shelf. Accelerated deepening proba-
bly drowned these strata, and sediment starvation
led to formation of an “overprinted” diagenetic con-
cretionary carbonate bed. Newly generated accom-
modation allowed renewed deposition of organic-rich,
fine-grained clastics, represented by the Upper
Geneseo Member. In central New York, dark-gray

silty mudstones grade vertically into dark muddy
siltstones as the Sherburne Formation interfingers
the Geneseo Formation. This expression represents
another shallowing-upward succession as a result of

progradation and increasing sediment supply.
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